ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Zaixin Li, T. Tanaka, T. Muroga, S. Sato, T. Nishitani
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 817-820
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1592
Articles are hosted by Taylor and Francis Online.
A series of irradiation experiments were performed using Fusion Neutronics Source (FNS) at JAEA for the investigation of activation of materials relevant to Lithium/vanadium-alloy and Flibe/vanadium-alloy blankets. The specimens of V-4Cr-4Ti, Er and Teflon in 10 mm×10 mm×0.03-0.1 mm were prepared for studying the activation of V-alloy structure, MHD coating of Er2O3, and F in molten salt Flibe, respectively. Be, Li and Li/Be mock-ups were assembled with Be and solid Li blocks in addition to the assembly for direct D-T neutron irradiation to examine the dependence of the activation on neutron spectrum. The neutron spectra in all irradiation locations were calculated using MCNP code and JENDL-3.3 file. The activities of the specimens induced in various neutron fields were measured with a high purity Ge detector (HP-Ge). Experimental analyses were carried out using FISPACT-2001 codes with both EAF-2001 file and FENDL/A-2.0 & FENDL/D-2.0 libraries. The typical calculation/experiment (C/E) values lay in the range of 0.8-1.2. Coarse group treat for (n,) reactions, especially in resonance range, could result in overestimation. Use of continuous cross section improves consistency of the calculation with the experiment. However, accurate estimate of spectra is necessary when the flux changes largely with energy around the threshold or the resonance peak.