ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
M. J. Pattison, K. N. Premnath, N. B. Morley
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 812-816
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1591
Articles are hosted by Taylor and Francis Online.
Fusion reactors designs frequently involve the use of liquid metal flows in the presence of strong magnetic fields. Simulation of the flows involves the solution of continuum equations for fluid flow and magnetic induction, usually done with finite difference methods. In this paper, an alternative method, based on the generalized lattice Boltzmann equation (GLBE), and implemented in the MetaFlow code is discussed. It has a number of desirable features, including fast execution, excellent parallel scalability, and can easily handle complex geometries. The use of the recent GLBE variant greatly enhances stability and accuracy. To simulate magnetohydrodynamic (MHD) flows relevant to fusion applications using GLBE, several new models have been developed, including new boundary condition formulations, preconditioners for faster steady-state convergence, variable electrical conductivity materials, and to resolve thin Hartmann layers. These models are discussed, and validations against MHD benchmarks, including 3-D driven cavity, high Hartmann number and turbulent cases are presented.