ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
M. Sawan, L. El-Guebaly, P. Wilson
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 763-770
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1582
Articles are hosted by Taylor and Francis Online.
Detailed three-dimensional nuclear analyses have been carried out for the chamber of a power plant concept that utilizes the Z-Pinch driven inertial confinement technology with a target yield of 3 GJ and repetition rate of 0.1 Hz per chamber. The elliptical chamber concept was modeled with the double-layered Recyclable Transmission Lines (RTL). Thick liquid jets are utilized to breed tritium, absorb energy, and shield the chamber wall. Two liquid breeder options were considered; the molten salt Flibe and the LiPb eutectic (Li17Pb83). The chamber wall is made of the low activation ferritic steel alloy F82H. While both breeders have the potential for achieving tritium self-sufficiency, the thermal power is ~6.5% higher with LiPb. However, a 55% thicker jet zone is required with LiPb to provide adequate chamber wall shielding. A thicker chamber wall is required with LiPb to reduce the nuclear energy leakage below 1%. The chamber wall does not need replacement except for the top part around the jet nozzles. Helium production in the chamber wall protected by LiPb is much lower than that with Flibe. Rewelding is possible only in the lower part of chamber wall below the pool.