ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Sal B. Rodriguez, Randall O. Gauntt, Randy Cole, Katherine McFadden, Fred Gelbard, Len Malczynski, Billy Martin, Shripad T. Revankar, Karen Vierow, Dave Louie, Louis Archuleta
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 752-755
Technical Paper | The Technology of Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST07-A1580
Articles are hosted by Taylor and Francis Online.
A hypothetical Z-Inertial Fusion Energy (IFE) plant was coupled to a sulfur iodine (SI) thermochemical cycle using a new version of MELCOR called MELCOR-H2. MELCOR-H2 was designed to model nuclear reactors that are coupled to thermochemical plants for the production of electricity and hydrogen.The Z-IFE input model consisted of three major system components - a fusion heat source control volume with several types of boundary conditions, an SI loop, and a Brayton secondary system. The components were coupled in order to investigate system feedback and hydrogen production. The input model was modified so that various parametric studies could be conducted. Particular emphasis was placed on plant operating temperature and maximizing hydrogen production.This paper summarizes the results of the SI system model as it was driven by temperature changes in the primary circuit that simulated those that would occur in a Z-IFE driven reactor.