ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
R. Coelho, S. Äkäslompolo, A. Dinklage, A. Kus, R. Reimer, E. Sundén, S. Conroy, E. Blanco, G. Conway, S. Hacquin, S. Heuraux, C. Lechte, F. Da Silva, A. Sirinelli, ITM-TF Contributors
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 1-8
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 3) | doi.org/10.13182/FST12-473
Articles are hosted by Taylor and Francis Online.
The European Union Integrated Tokamak Modelling Task Force (ITM-TF) has developed a standardized platform and an integrated modeling suite of codes for the simulation and prediction of a complete plasma discharge in any tokamak. The framework developed by ITM-TF allows for the development of sophisticated integrated simulations (workflows) for physics application, e.g., free-boundary equilibrium with feedback control, magnetohydrodynamic stability analysis, core/edge plasma transport, and heating and current drive. A significant effort is also under way to integrate synthetic diagnostic modules in the ITM-TF environment, namely, focusing on three-dimensional reflectometry, motional Stark effect, and neutron and neutral particle analyzer diagnostics. This paper gives an overview of the conceptual design of ITM-TF and preliminary results of the aforementioned synthetic diagnostic modules.