ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Kazuhiro Kobayashi, Hidenori Miura, Takumi Hayashi, Shuichi Hoshi, Toshihiko Yamanishi
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 711-715
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1574
Articles are hosted by Taylor and Francis Online.
To obtain performance data of atmosphere detritiation system at the off normal events such as SF6 release for the safety of ITER, the detritiation experiment was planned and performed at Tritium Process Laboratory (TPL) in Japan Atomic Energy Agency (JAEA) using a small scaled detritiation system for the oxidation performance test which can process gas flow rate of 0.06 m3/hr in once through. The detritiation system consists of two oxidation catalyst beds (473K and 773K) for converting hydrogen isotopes and tritiated methane in compounds to water vapor and a bubbler for removing water vapor. SF6 gas is used as an electric insulation gas of Neutral Beam Injection system (NBI) in ITER, and is expected to be released in an accident such as fire. In this time, the performance of oxidation catalyst bed of the detritiation system for hydrogen under existence of SF6 which are released from NBI was investigated.The SF6 gas was notably decomposed in the case of the catalyst bed temperature higher than 623K. In addition, when 0.05% or more of SF6 was introduced with 1% of hydrogen, a part of the water produced by the 473K catalyst bed was reduced to hydrogen due to the reaction with the decomposed gas in SF6. Consequently, the detritiation factor (D.F.) of the detritiation system was decreased to less than 50 from > 10000 of its initial value. Since the effect of SF6 depends on its concentration closely, the amount of SF6 released into the tritium handling area in an accident should be reduced by some ideas of the arrangement of components using SF6 in the buildings.