ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Kazuhiro Kobayashi, Takumi Hayashi, Hirofumi Nakamura, Toshihiko Yamanishi, Yasuhisa Oya, Kenji Okuno
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 696-700
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | dx.doi.org/10.13182/FST07-A1571
Articles are hosted by Taylor and Francis Online.
In a fusion reactor of high safety and acceptability, safe confinement of tritium is one of key issues for the fusion reactor. Tritium should be well-controlled and not excessively released to the environment and to prevent workers from excess exposure. Especially, the hot cell and tritium facilities of ITER will use various construction materials such as the organic materials. The hot cell is maintained in the dry atmosphere very much, and the maintenance of the apparatus contaminated by high concentration tritium is assumed. Therefore, the hot cell may be contaminated by high concentration tritium. Since the epoxy paint which will be used as a paint on the wall of the hot cell was contaminated by tritium compared with metal material, it is very important to study the efficient decontamination of the epoxy paint from a viewpoint of the protection the excess exposure of the workers. For tritium decontamination processes, so-called 'soaking' effect is important. This effect is based on sorption of tritiated water vapor on the materials and subsequent desorption from them. Therefore, in order to develop for the optimal decontamination technique, the decontamination experiment was carried out as a function of water vapor concentration in the purge gas (N2) for epoxy paint, acrylic resin and butyl rubber. As the result, the desorption rate for the organic materials was evaluated by purging gas of N2, and then furthermore, the residual tritium on the organic materials was quickly removed by adding water vapor in purging gas. The effect of adding water vapor was found on the decontamination for the organic materials.