ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
T. Hayashi, H. Nakamura, K. Isobe, K. Kobayashi, T. Yamanishi, K. Okuno
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 687-691
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | dx.doi.org/10.13182/FST07-A1569
Articles are hosted by Taylor and Francis Online.
In order to accumulate data on tritium transferred to cooling water of a fusion reactor, a series of experiments of tritium permeation into water jacket pressurized to 0.8MPa by He gas was performed through pure iron piping, which contained about 1 kPa of pure tritium gas at 423 K. Chemical forms of tritium permeated into water were monitored periodically under continuous purging water jacket by He. Observation of metal surface was also carried out periodically by SEM and XRD analysis.The actual tritium permeation rate was about 1/5 level of the calculated value. Even if surface oxide layer (magnetite, porous & fine layers) grew in the water boundary, tritium permeation rate to water was not changed drastically. On the other hand, hydrogen gas (HT) fraction of tritium permeated in water jacket decreased drastically with oxide layer growth. Furthermore, permeated species and amounts were not affected clearly by the dissolved hydrogen in water by purging 1% H2 in He.