ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
K. Katayama, T. Okamura, K. Imaoka, M. Sasaki, Y. Uchida, M. Nishikawa, S. Fukada
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 640-644
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1561
Articles are hosted by Taylor and Francis Online.
Carbon based material and tungsten are used in ITER as plasma facing materials in the divertor region. Presumably, carbon-tungsten mixed materials will be formed on the surface of the inner components of the vacuum vessel. Therefore, it is necessary to understand incorporation phenomena of hydrogen into carbon-tungsten mixed materials. In this study, carbon-tungsten co-deposition layers were formed by sputtering method using hydrogen RF plasma. Hydrogen incorporation was investigated as a function of atomic ratio of carbon and tungsten contained in the layer. The obtained hydrogen retention was in the range between 0.16 and 0.83 as H/(C+W). The carbon ratio dependence on hydrogen incorporation was not observed. It was found that the release behavior of the incorporated hydrogen changes depending on the atomic ratio of C and W in the layer.