ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
Qi Xu, T. Nagasaka, T. Muroga
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 609-612
Technical Paper | First Wall, Blanket, and Shield | dx.doi.org/10.13182/FST07-A1555
Articles are hosted by Taylor and Francis Online.
Fe-Cr-W based low activation ferritic steels are widely regarded as promising blanket structural materials for fusion reactors, while liquid lithium breeder/coolant concept provides an attractive option for high efficiency and simplicity of blanket system. However, past compatibility tests of ferritic steels with liquid lithium were almost limited to conventional Fe-Cr-Mo steels. In this study, the corrosion behavior of the candidate reduced activation ferritic steel, JLF-1(Fe-9Cr-2W-0.1C) in lithium was investigated. Static immersion tests were carried out using coupon specimens (16 × 4 × 0.25 mm) at 873K and 973K for 100hr. At 973K, the phase transformation from martensite to ferrite resulted in decrease in hardness from 250 to 140Hv. This seemed to be caused by depletion of C. Examinations of binary Fe-Cr and pure iron were also carried out for comparison with JLF-1.