ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
Ming-Jiu Ni, Ramakanth Munipalli, Neil B. Morley, Peter Huang, Mohamed A. Abdou
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 587-594
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1552
Articles are hosted by Taylor and Francis Online.
A consistent and conservative scheme designed by Ni et al. for the simulation of MHD flows with low magnetic Reynolds number has been implemented into a 3D parallel code of HIMAG based on solving the electrical potential equation. The scheme and code are developed on an unstructured collocated mesh, on which velocity (u), pressure (p), and electrical potential ([variant phi]) are located in the cell center, while current fluxes are located on the cell faces. The calculation of current fluxes is performed using a conservative scheme, which is consistent with the discretization scheme for the solution of electrical potential Poisson equation. The Lorentz force is calculated at cell centers based on a conservative formula or a conservation interpolation of the current density. We validate the numerical methods, and the parallel code by simulating 2D fully developed MHD flows with analytical solutions existed and 3D MHD flows with experimental data available. The validation cases are conducted with Hartmann number from 100 to 104 on rectangular grids and/or unstructured hexahedral and prism grids.