ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Ming-Jiu Ni, Ramakanth Munipalli, Neil B. Morley, Peter Huang, Mohamed A. Abdou
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 587-594
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1552
Articles are hosted by Taylor and Francis Online.
A consistent and conservative scheme designed by Ni et al. for the simulation of MHD flows with low magnetic Reynolds number has been implemented into a 3D parallel code of HIMAG based on solving the electrical potential equation. The scheme and code are developed on an unstructured collocated mesh, on which velocity (u), pressure (p), and electrical potential ([variant phi]) are located in the cell center, while current fluxes are located on the cell faces. The calculation of current fluxes is performed using a conservative scheme, which is consistent with the discretization scheme for the solution of electrical potential Poisson equation. The Lorentz force is calculated at cell centers based on a conservative formula or a conservation interpolation of the current density. We validate the numerical methods, and the parallel code by simulating 2D fully developed MHD flows with analytical solutions existed and 3D MHD flows with experimental data available. The validation cases are conducted with Hartmann number from 100 to 104 on rectangular grids and/or unstructured hexahedral and prism grids.