ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. Koehler, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, S. Shin
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 526-530
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1542
Articles are hosted by Taylor and Francis Online.
The liquid surfaces of liquid-protected high heat flux plasma-facing components may be subject to large temperature gradients caused by non-uniform incident particle and heat flux. Thermocapillary flows due to such gradients can potentially cause dry-out in high-temperature regions. Experimental and numerical investigations have been conducted to determine the maximum allowable non-dimensional temperature gradient just before rupture in thin liquid films of various aspect ratios and viscosities . Experiments were conducted using a needle contact method to measure the liquid film height of axisymmetric silicone oil ( = 4.8 × 10-3 Ns/m2-9.6 × 10-1 Ns/m2) films for aspect ratios of 0.0065 to 0.02 on a non-isothermal stainless steel surface. The experimental data were compared with predictions from both an axisymmetric asymptotic analysis for the steady-state film height for thin layers and a direct numerical simulation using the level contour reconstruction method for thicker layers. The results of this investigation will provide component designers with experimentally-validated limits on the maximum allowable temperature radients to prevent local dry spot formation and possible burnout.