ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
James P. Blanchard, Jens Conzen
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 506-510
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1539
Articles are hosted by Taylor and Francis Online.
Rapid heating by x-rays and ions in Inertial Fusion Energy (IFE) chambers will produce stress waves in dry chamber walls, in some cases leading to damage that will ultimately fail the structure. These waves can affect the surface or propagate to the substrate and produce delamination. Hence, it is important that these waves be understood. Models exist for thermally induced stress waves resulting from surface heating, but models with volumetric heating have not been presented for IFE conditions. In this paper we develop models for elastic stresses caused by rapid volumetric heating in a half-space. The stress wave models are obtained analytically for heating distributions which are both uniform over a finite region and exponentially decaying over the entire depth. These two cases cover the relevant heating for a typical IFE threat. Results are given for both x-ray and ion heating using threats from a direct drive target developed for the High Average Power Laser (HAPL) target.