ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
James P. Blanchard, Jens Conzen
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 506-510
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1539
Articles are hosted by Taylor and Francis Online.
Rapid heating by x-rays and ions in Inertial Fusion Energy (IFE) chambers will produce stress waves in dry chamber walls, in some cases leading to damage that will ultimately fail the structure. These waves can affect the surface or propagate to the substrate and produce delamination. Hence, it is important that these waves be understood. Models exist for thermally induced stress waves resulting from surface heating, but models with volumetric heating have not been presented for IFE conditions. In this paper we develop models for elastic stresses caused by rapid volumetric heating in a half-space. The stress wave models are obtained analytically for heating distributions which are both uniform over a finite region and exponentially decaying over the entire depth. These two cases cover the relevant heating for a typical IFE threat. Results are given for both x-ray and ion heating using threats from a direct drive target developed for the High Average Power Laser (HAPL) target.