ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
TVA and Entra1 to deploy 6 GW of NuScale SMRs
The Tennessee Valley Authority and Houston, Texas–based energy production company Entra1 Energy recently announced the signing of an agreement to collaborate on the deployment of six new nuclear power plants equipped with NuScale small modular reactors.
M. Rampp, R. Preuss, R. Fischer, K. Hallatschek, L. Giannone
Fusion Science and Technology | Volume 62 | Number 3 | November 2012 | Pages 409-418
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 2) | doi.org/10.13182/FST12-481
Articles are hosted by Taylor and Francis Online.
To achieve real-time control of fusion plasmas, the flux distribution and derived quantities have to be calculated within the time of the machine control cycle, which in the case of the ASDEX-Upgrade experiment can be as small as 1 ms. To this end we have developed a fast numerical solver for the Grad-Shafranov equation, which allows exploitation of the parallel capabilities of modern multicore processors. Our implementation, termed GPEC (Garching parallel equilibrium code), is based entirely on open-source software components. For a numerical grid of size 32 × 64, our new code requires only 0.04 ms (0.11 ms for 64 × 128) for a single call of the Grad-Shafranov solver using a standard Intel Xeon quad-core CPU (3.2 GHz). We also show the first GPEC benchmark results obtained on the Intel Sandy Bridge eight-core server processor and demonstrate the relevance of the new solver for application in plasma equilibrium codes.