ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. González, J. Vega, A. Murari, A. Pereira, JET-EFDA Contributors
Fusion Science and Technology | Volume 62 | Number 3 | November 2012 | Pages 403-408
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 2) | doi.org/10.13182/FST12-A15339
Articles are hosted by Taylor and Francis Online.
New automated analysis methods allow the analysis of large amounts of data without human interaction. Tokamak machines, such as JET, are perfect candidates to apply data mining techniques in order to obtain results with high statistical relevance. In this paper, an automated technique to analyze the pedestal edge gradient is introduced. This technique does not require human intervention and therefore can be applied to many pulses. The pedestal edge gradient is the temperature gradient corresponding to the edge transport barrier at the edge of high-confinement-mode plasmas. This gradient is quantified using the temperature profiles obtained from the electron cyclotron emission diagnostic. An automated technique to locate events in plasma pulses is applied in order to locate edge-localized modes (ELMs), and then the evolution of the edge pedestal gradient is analyzed during the ELMs. The degradation of the edge pedestal gradient during an ELM is quantified using the edge pedestal gradient 2 ms before the ELM as a reference of the amplitude of the gradient. This technique has been applied to a JET database containing >700 pulses and >46 000 ELMs.