ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
S. González, J. Vega, A. Murari, A. Pereira, JET-EFDA Contributors
Fusion Science and Technology | Volume 62 | Number 3 | November 2012 | Pages 403-408
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 2) | doi.org/10.13182/FST12-A15339
Articles are hosted by Taylor and Francis Online.
New automated analysis methods allow the analysis of large amounts of data without human interaction. Tokamak machines, such as JET, are perfect candidates to apply data mining techniques in order to obtain results with high statistical relevance. In this paper, an automated technique to analyze the pedestal edge gradient is introduced. This technique does not require human intervention and therefore can be applied to many pulses. The pedestal edge gradient is the temperature gradient corresponding to the edge transport barrier at the edge of high-confinement-mode plasmas. This gradient is quantified using the temperature profiles obtained from the electron cyclotron emission diagnostic. An automated technique to locate events in plasma pulses is applied in order to locate edge-localized modes (ELMs), and then the evolution of the edge pedestal gradient is analyzed during the ELMs. The degradation of the edge pedestal gradient during an ELM is quantified using the edge pedestal gradient 2 ms before the ELM as a reference of the amplitude of the gradient. This technique has been applied to a JET database containing >700 pulses and >46 000 ELMs.