ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
B. H. Mills, J. D. Rader, D. L. Sadowski, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 62 | Number 3 | November 2012 | Pages 379-388
Technical Paper | doi.org/10.13182/FST12-485
Articles are hosted by Taylor and Francis Online.
Experimental studies based upon dynamic similarity have been used to evaluate the thermal performance of several modular helium-cooled tungsten divertor designs, including a configuration similar to the helium-cooled modular divertor with multiple jets (HEMJ). Until recently, all of these experiments used air, instead of helium, as the coolant. The average Nusselt number and loss coefficient were determined from cooled surface temperature and pressure drop data. Correlations were developed for the Nusselt number and loss coefficient as a function of the Reynolds number then used to predict the thermal performance of the divertor under prototypical conditions when cooled with high-temperature, high-pressure helium. Recently, experiments were performed using helium and argon to confirm the dynamic similarity assumption. The results indicated that the previous experiments with air, which were performed at the prototypical nondimensional coolant mass flow rate, or Reynolds number, did not account for the differences in the fraction of the incident power conducted through the walls of the divertor versus that convected, i.e., removed, by the coolant.Dimensional analysis and numerical simulations suggest that for a given divertor geometry this fraction can be characterized by the ratio of the thermal conductivities of the divertor material and the coolant. Nusselt number correlations were developed to include the effect of the thermal conductivity ratio. Based on these correlations, the predicted maximum heat flux values that can be accommodated by the HEMJ-like configuration are reduced by [approximately]20% from previous estimates. The results also suggest that the maximum heat flux that can be accommodated by this design can be increased by as much as 19% by adding an array of cylindrical pin fins on the cooled pressure boundary. However, as expected, adding the fins increases the pumping power for the coolant by [approximately]16%. As a fraction of maximum total incident thermal power, however, the pumping power decreases by 2% when the fins are added due to the significant increase in the maximum heat flux.