ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
STEM event empowers next generation of women leaders in science
Nearly 60 eighth graders from schools across the central Savannah River area recently gathered at the Ruth Patrick Science Education Center in Aiken, S.C., for the Savannah River Site’s “STEM Like a Girl—Introduce a Girl to Engineering and IT” event. This initiative is designed to inspire the next generation of female engineers and STEM leaders.
K. J. Caspary, B. E. Chapman, S. P. Oliva, S. T. A. Kumar
Fusion Science and Technology | Volume 62 | Number 3 | November 2012 | Pages 375-378
Technical Paper | doi.org/10.13182/FST12-A15336
Articles are hosted by Taylor and Francis Online.
On the Madison Symmetric Torus magnetic fusion plasma experiment, frozen pellet injection is an established method of depositing deuterium fuel into the core of the plasma. To freeze deuterium gas into pellets, the injector is cooled to 10 K with a cryogenic helium refrigerator. To exhaust residual frozen deuterium following injection of each pellet, the injector is warmed by resistive heating to >18.7 K, the triple point of deuterium. Motivated by the desire to inject carbon-containing pellets, the injector was modified to allow the freezing and injection of methane. The triple point of methane, 90.7 K, is well beyond the capability of the resistive heating hardware. To supplement the resistive heating, a small, steady flow of room-temperature helium was introduced as a heat source. The flow rate was optimized to provide minimum and maximum injector temperatures of 24 and 95 K, respectively, sufficient for methane pellet formation and exhaust. The flow rate can easily be optimized for other gases as well.