ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
D. Brisset, V. Lamaison, G. Paquignon, J. P. Périn, E. Bouleau, D. Chatain, J. Manzagol
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 473-477
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1533
Articles are hosted by Taylor and Francis Online.
The Laser MegaJoule (LMJ) program plans to obtain Deuterium-Tritium (DT) mixture ignition leading to a fusion gain of ten. Cryogenic targets are hollow spheres whose interior is covered with a solid cryogenic fuel layer. The success of DT ignition depends on quality of the fuel layer uniformity. These targets must be cooled and kept at temperatures near the triple point (19.8 K) with a very good stability (+/-1 mK) for many hours, in the center of the 5 m radius experimental vacuum chamber with a position accuracy of a few microns. In order to validate our current device concepts, we have manufactured scale one prototypes to confirm all thermal and mechanical challenges, such as sharp thermal regulation, cooling autonomy and cryogenic target transfer.