ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ron Petzoldt, Emanuil Valmianski, Lane Carlson, Phan Huynh
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 459-463
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1530
Articles are hosted by Taylor and Francis Online.
To achieve high gain in an Inertial Fusion Energy (IFE) power plant, driver beams must hit direct drive targets with ±20 m accuracy. For driver beams to arrive at the target with sufficient simultaneity, the targets must be placed to ±5 mm from chamber center. Better placement accuracy simplifies driver beam steering by reducing the distance that steering mirrors must reposition the beam aim point in the last few ms. Current best target placement experimental accuracy is 0.22 mrad standard deviation which corresponds to 3 mm at 13 m. A factor of two improvement is required to achieve 3 accuracy in ±5 mm, and even greater accuracy is desired.General Atomics has recently embarked on a program to improve target placement accuracy through electrostatic steering. Preliminary experiments have improved accuracy of falling charged spheres. We optically track the motion, and feed back appropriate voltage to steering electrodes. A steering algorithm was prepared to steer targets with placement accuracy limited primarily by rate and accuracy of target tracking. Substantial accuracy improvement is expected with higher-frequency tracking and voltage amplification equipment. The results will be reported.