ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
Ron Petzoldt, Emanuil Valmianski, Lane Carlson, Phan Huynh
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 459-463
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1530
Articles are hosted by Taylor and Francis Online.
To achieve high gain in an Inertial Fusion Energy (IFE) power plant, driver beams must hit direct drive targets with ±20 m accuracy. For driver beams to arrive at the target with sufficient simultaneity, the targets must be placed to ±5 mm from chamber center. Better placement accuracy simplifies driver beam steering by reducing the distance that steering mirrors must reposition the beam aim point in the last few ms. Current best target placement experimental accuracy is 0.22 mrad standard deviation which corresponds to 3 mm at 13 m. A factor of two improvement is required to achieve 3 accuracy in ±5 mm, and even greater accuracy is desired.General Atomics has recently embarked on a program to improve target placement accuracy through electrostatic steering. Preliminary experiments have improved accuracy of falling charged spheres. We optically track the motion, and feed back appropriate voltage to steering electrodes. A steering algorithm was prepared to steer targets with placement accuracy limited primarily by rate and accuracy of target tracking. Substantial accuracy improvement is expected with higher-frequency tracking and voltage amplification equipment. The results will be reported.