ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Ron Petzoldt, Neil Alexander, Lane Carlson, Graham Flint, Dan Goodin, Jon Spalding, Mark Tillack
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 454-458
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1529
Articles are hosted by Taylor and Francis Online.
Target engagement is the process of measuring the target trajectory and directing the driver beams to hit the target at a position that is predicted based on these measurements. New target engagement concepts have been proposed in the last few years to continuously track the targets and to verify that the tracking system is aligned with the driver beams for each shot.For transverse position, a laser beam continuously backlights the target and the position of the Poisson spot in the center of the target's shadow is measured. Axial target displacement is measured using a laser interferometer and counting interference fringes as the target moves away from the laser source. Final steering corrections use a "glint" reflected off the target ~1 ms prior to firing the laser beams and collected in a separate Position Sensitive Detector (PSD) for each driver beamlet. The position of the glint on the PSD is compared to the position of an alignment beam that is collinear with the driver beam. Steering corrections are then made based on the difference in position of the two spots reaching the PSD.