ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
James P. Blanchard, René Raffray
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 440-444
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1527
Articles are hosted by Taylor and Francis Online.
A laser fusion chamber must absorb the energy emitted by the target in such a way that the plant can achieve a commercially viable power conversion efficiency. This must be accomplished with a design that can reliably withstand on the order of a billion shots. For a dry chamber wall, the key lifetime issues are thermo-mechanical effects resulting from the rapid heating, ion effects, such as blistering and sputtering, and radiation effects. These issues define the chamber size by providing flux limits for the various threats. In cases where a dry, unprotected wall cannot provide an adequate lifetime, measures must be taken to reduce the threat to the wall. Previously proposed approaches include filling the chamber with sufficient gas to stop the majority of the ions before they reach the wall or redirection of the ions by a cusp field. Other design trade-offs that must be addressed include the need to reduce heating of the target during injection and the need for adequate clearing of the chamber between shots. In this paper we provide a review of the chamber design approaches required for commercially viable laser fusion power plants, the issues driving those designs, and some system-level analyses that provide insight into the implications of these design issues for the overall economics of a commercial plant.