Magnetized Target Fusion (MTF) occupies an intermediate region between conventional Magnetic Fusion Energy (MFE) and Inertial Fusion Energy (IFE). A particular approach, extrapolated from the ongoing FRX-L experimental effort, involves the generation of a Field Reversed Configuration (FRC) suitable for translation along an axial magnetic field and cylindricalliner (i.e., converging flux conserver) implosion and pdV heating to burn conditions. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the pulsed power-plant duty cycle. The modular power-plant embodiment recalls the Fast Liner Reactor (FLR) and shares stand-off and blast-mitigation features of the recent characterization of the Z-IFE. Recycle and economic remanufacture of destroyed front-end apparatus must be performed under tight cost constraints. A tin-lithium alloy is being investigated for multifunctional suitability as the liner, transmission-line, and primary coolant/breeder material. Key performance drivers are described.