ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
D. Mueller, R. Raman, M. G. Bell, T. R. Jarboe, B. LeBlanc, R. Maqueda, S. Sabbagh, B. A. Nelson
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 393-397
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | dx.doi.org/10.13182/FST07-A1519
Articles are hosted by Taylor and Francis Online.
Future toroidal magnetic confinement fusion plasma devices such as the Component Test Facility (CTF) require non-inductive toroidal current drive. A new method of non-inductive startup, referred to as transient coaxial helicity injection (Transient CHI), has been developed on the Helicity Injected Torus (HIT-II) experiment and the National Spherical Torus Experiment NSTX). In this method, plasma current is produced by discharging a capacitor bank between coaxial electrodes in the presence of toroidal and poloidal magnetic fields chosen such that the plasma rapidly expands into the chamber. When the injected current is rapidly decreased, magnetic reconnection occurs near the injection electrodes with the toroidal plasma current forming closed flux surfaces. In NSTX, transient CHI has demonstrated closed-flux current generation of up to 160 kA, without the use of a central solenoid. Detailed experimental measurements made on NSTX include fast time-scale visible imaging of the entire process.