ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, E. Utterback
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 383-387
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1517
Articles are hosted by Taylor and Francis Online.
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 109 shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 × 6 cm2 ytterbium doped strontium fluoroapatite amplifier slabs pumped by eight 100 kW diode arrays. A portion of the output 1047 nm was converted to 523 nm at 160 W average power with 73 % conversion efficiency using yttrium calcium oxy-borate (YCOB).