ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. Moro, A. Bruschi
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 256-265
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1505
Articles are hosted by Taylor and Francis Online.
Launching systems that use in sequence more than one mirror to direct and focus electron cyclotron (EC) waves with a sufficient steering capability in relevant absorption regions of fusion plasmas may produce general astigmatic beams. The double curvature of a generic reflecting surface, even induced by deformation effects in quasi-optical systems that handle high power, is an additional source of general astigmatism. Describing the propagation of general astigmatic Gaussian beams is a necessary step in the optimization phase of a complex EC resonance heating (ECRH) launcher, since simple astigmatism treatment does not reproduce the main feature of these beams, whose spot and phase ellipse orientation changes with propagation even in free space. The correct orientation for both spot ellipse and phase ellipse is one of the input key parameters to perform realistic calculations with beam-tracing codes, which aim to characterize a launching system in terms of localized heating and current drive efficiency. In this work we describe the influence of double-curvature effects and deformations on beam propagation in terms of beam dimensions and directions. In particular, we present an application of the theory of general astigmatic Gaussian beam propagation in vacuum to the case of the remote steering option for the ITER ECRH upper launcher. In this option beams are found to be strongly astigmatic, with a major/minor axis ratio in relevant absorption regions ranging from 2.3 to 4.4 in the cases examined. Furthermore, the major axis of the resulting spot ellipses presents an orientation angle variation (from the last mirror to the expected absorption regions) ranging from 9.1 to 22.8 deg in the cases investigated. The final orientation is close to a vertical direction with respect to the equatorial plane of ITER.