ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
I. Danilov, R. Heidinger, A. Meier, B. Piosczyk, M. Schmid, P. Späh, W. Bongers, M. Graswinckel, B. Lamers, A. G. A. Verhoeven
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 250-255
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1504
Articles are hosted by Taylor and Francis Online.
The millimeter-wave system of the remote steering launcher at the upper port level is composed of beamlines that are rated for 2-MW continuous-wave operation at 170 GHz. In each beamline, a torus window is located between the entrance to the in-vessel square corrugated waveguide and the steerable mirrors in the launcher back end. In the reference design, the maximum steering angle of 12 deg imposes a 27-mm off-center beam shift to the window disk center, which in turn leads to asymmetrical heating of the window. This raises particular concerns of enhanced thermomechanical stresses in the window and in the metallic window cuffs. In order to qualify the optical, mechanical, and thermohydraulic design, high-power short-pulse and thermohydraulic tests were performed using a prototype chemical vapor deposition diamond torus window developed and manufactured at Forschungszentrum Karlsruhe. It was proven that arcing did not occur even under maximum millimeter-wave power levels available (up to 0.53 MW) and that the millimeter-wave beam profile was fully maintained. A test facility allowed thermohydraulic studies of the window cooling system with parameters characteristic for component cooling water loops at ITER (pw = 1.0 MPa, Tw = 40°C).