ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
V. Shevchenko, G. Cunningham, A. Gurchenko, E. Gusakov, B. Lloyd, M. O'Brien, A. Saveliev, A. Surkov, F. Volpe, M. Walsh
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 202-215
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1499
Articles are hosted by Taylor and Francis Online.
Burning plasma spherical tokamaks (STs) rely on off-axis current drive (CD) and nonsolenoid start-up techniques. Electron Bernstein waves (EBWs) may provide efficient off-axis heating and CD in high-density ST plasmas. EBWs may also be used in the plasma start-up phase because EBW absorption and CD efficiency remain high even in relatively cold plasmas. EBW studies on the Mega Ampere Spherical Tokamak (MAST) can be subdivided into four separate subjects: thermal electron cyclotron emission observations from overdense plasmas, EBW modeling, proof-of-principle EBW heating experiments with the existing 60-GHz gyrotrons, and EBW assisted plasma start-up at 28 GHz. These studies are also aimed at determining the potential for a high-power EBW system for heating and CD in MAST. The optimum choice of frequency and launch configuration is a key issue for future applications in MAST. This paper describes diagnostics, modeling tools, and high-power radio frequency systems developed specifically for EBW research in MAST. The experimental methodology employed in proof-of-principle EBW heating experiments along with experimental results is discussed in detail. EBW heating via the ordinary-extraordinary-Bernstein (O-X-B) mode conversion has clearly been observed for the first time in an ST.