ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. Ramponi, D. Farina, M. A. Henderson, E. Poli, G. Saibene, H. Zohm
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 193-201
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1498
Articles are hosted by Taylor and Francis Online.
The ability of ITER electron cyclotron (EC) wave launchers to drive localized current at various plasma locations is analyzed by means of beam-tracing codes, looking at extended physics application of EC current drive in ITER and at possible synergy between the two launchers. Calculations for an improved design of the upper launcher, based on four upper ports and front steering mirrors allowing both optimum focusing of the beams and an extended plasma deposition region, show that narrow, high peak current density profiles may be maintained over the radial range 0.4 p 0.9. Calculations for the equatorial launcher, where the control of the deposition location is achieved by varying the toroidal injection angle , point out that because of poor localization and incomplete power absorption at large toroidal angles ( > 40 deg), the power deposition and current drive location by this launcher is limited to p 0.55. Moreover, it is shown that performance close to the center can be improved with a poloidal tilt of the low and top front mirrors. The main aim of this study is to provide guidance to the design of both launchers in order to optimize their performance, depending on the physics application.