ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
G. Ramponi, D. Farina, M. A. Henderson, E. Poli, G. Saibene, H. Zohm
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 193-201
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1498
Articles are hosted by Taylor and Francis Online.
The ability of ITER electron cyclotron (EC) wave launchers to drive localized current at various plasma locations is analyzed by means of beam-tracing codes, looking at extended physics application of EC current drive in ITER and at possible synergy between the two launchers. Calculations for an improved design of the upper launcher, based on four upper ports and front steering mirrors allowing both optimum focusing of the beams and an extended plasma deposition region, show that narrow, high peak current density profiles may be maintained over the radial range 0.4 p 0.9. Calculations for the equatorial launcher, where the control of the deposition location is achieved by varying the toroidal injection angle , point out that because of poor localization and incomplete power absorption at large toroidal angles ( > 40 deg), the power deposition and current drive location by this launcher is limited to p 0.55. Moreover, it is shown that performance close to the center can be improved with a poloidal tilt of the low and top front mirrors. The main aim of this study is to provide guidance to the design of both launchers in order to optimize their performance, depending on the physics application.