ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
W. M. Stacey
Fusion Science and Technology | Volume 52 | Number 1 | July 2007 | Pages 29-67
Technical Paper | dx.doi.org/10.13182/FST07-A1485
Articles are hosted by Taylor and Francis Online.
The strong temperature dependence, over certain temperature ranges, of the radiation cooling rate of low-Z impurities, of the atomic physics cooling and particle source rates associated with recycling and fueling neutrals, of the ion-electron recombination particle loss rate, of the turbulent transport loss rate, and of the fusion alpha-particle heating rate have all been identified as "drivers" of thermal instabilities in the coupled plasma particle, momentum, and energy balances. This paper surveys the experimental observations of a number of abrupt transition phenomena in plasma operating conditions - i.e., density-limit disruptions, multifaceted asymmetric radiations from the edge (MARFEs), divertor MARFEs, detachment, in-out divertor heat flux asymmetries, H-L and L-H transitions, confinement, and pedestal deterioration - or anticipated in future reactors - i.e., power excursions - their theoretical interpretations in terms of thermal instabilities driven by the temperature dependence of various radiative and atomic physics cooling mechanisms, and a comparison of theoretical prediction with experimental observations. Also surveyed are theoretical predictions of thermal instabilities in the power balance driven by the strong positive temperature dependence of the fusion heating rate.