ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Javier E. Vitela
Fusion Science and Technology | Volume 52 | Number 1 | July 2007 | Pages 1-28
Technical Paper | doi.org/10.13182/FST07-A1484
Articles are hosted by Taylor and Francis Online.
We report on the burn control studies of a D-T-fueled tokamak reactor using a two-temperature, zero-dimensional, volume-averaged model, assuming that electrons and ions have the same radial profile with different central temperatures. Balance equations for the particle and energy densities are used assuming that energy and particle transport losses are independent of each other and can be estimated online; thermalization time delays of the energetic alpha particles produced by fusion are taken into account in the dynamical equations. The burn stabilization is achieved with radial basis neural networks (RBNNs) that concurrently modulate a D-T refueling rate, a neutral 4He beam, and auxiliary heating powers to the electrons and the ions, all constrained to maximum allowable levels. The resulting network provides feedback stabilization in a wide range of energy confinement times for plasma density and temperature excursions significantly far from their nominal values. Transient examples using different ELMy scaling laws show that the RBNN controller is stable with respect to any particular scaling law that the tokamak may actually follow for the energy and particle transport losses and is also robust with respect to noise in the measurement of the confinement times. Furthermore, it satisfactorily responds to sudden changes in fast-alpha-particle losses due to increments in magnetohydrodynamic events.