ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, W. Seka
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 717-726
Technical Paper | doi.org/10.13182/FST07-A1469
Articles are hosted by Taylor and Francis Online.
Backlit optical shadowgraphy is the primary diagnostic for hydrogenic ice-layer characterization in cryogenic targets at the Laboratory for Laser Energetics (LLE). Reflection and refraction of light passing through the ice layer produce characteristic rings on the image. The position of the most prominent of the shadowgraph rings, known as the bright ring, can be resolved to ~0.1-pixel rms, corresponding to less than 0.2 m for typical target shadowgraphs. The LLE target characterization stations use two camera angles and target rotation to record target shadowgraphs from many different views (typically 48) and build a three-dimensional (3-D) topology of the ice layer. The standard method of bright-ring analysis using spherically symmetric ray-trace calculations to determine the ice surface is limited to mode numbers up to around [script l]max = 10 by gaps in the data and the effects of ice-layer asymmetries that invalidate the symmetric ray trace calculations. A 3-D ray-tracing model has been incorporated into the shadowgraph analysis. The result is a self-consistent determination of the hydrogen/vapor surface structure for cryogenic targets up to higher-mode numbers ([script l]max = 16). This reduces the standard deviation between the measured bright rings and those predicted for the 3-D ice surface (by 45% from 1.5 m to 0.8 m in the example shown).