ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
J. F. Hund, J. McElfresh, C. A. Frederick, A. Nikroo, A. L. Greenwood, W. Luo
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 701-704
Technical Paper | doi.org/10.13182/FST07-A1467
Articles are hosted by Taylor and Francis Online.
Aluminum oxide aerogel can be used as a backlighter target to provide a radiation source for diagnostics during ICF experiments. To demonstrate the feasibility of this type of target, it was necessary to cast thin pieces of aerogel for plasma emission studies of aluminum oxide. We were able to demonstrate density control over a range of 50-400 mg/cc, and, furthermore, cast the aerogel as a thin (0.6-0.7 mm), smooth monolith that did not require additional machining. The fabrication of these targets begins with a solution of aluminum chloride, ethanol, and water and is then catalyzed with propylene oxide to gel within molds to form the shape. Supercritical drying with carbon dioxide provides the dry aerogel. Various target densities were made by adjusting the relative amounts of starting materials and post treatment condition. The finished materials were characterized for density, pore size, and water content. Initial freestanding targets of 98 mg/cc have been fabricated and shot, and other similar targets of densities from 50-400 mg/cc have been fabricated for future experiments.