ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Geert Verdoolaege, Giorgos Karagounis, Andrea Murari, Jesús Vega, Guido Van Oost, JET-EFDA Contributors
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 356-365
Selected Paper from the Seventh Fusion Data Validation Workshop 2012 (Part 1) | doi.org/10.13182/FST12-A14627
Articles are hosted by Taylor and Francis Online.
Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in fusion experiments. In this work, we present an integrated framework for (real-time) pattern recognition for fusion data. The main starting point is the inherent probabilistic nature of measurements of plasma quantities. Since pattern recognition is essentially based on geometric concepts such as the notion of distance, this necessitates a geometric formalism for probability distributions. To this end, we apply information geometry for calculating geodesic distances on probabilistic manifolds. This provides a natural and theoretically motivated similarity measure between data points for use in pattern recognition techniques. We apply this formalism to classification for the automated identification of plasma confinement regimes in an international database and the prediction of plasma disruptions at JET. We show the distinct advantage in terms of classification performance that is obtained by considering the measurement uncertainty and its geometry. We hence advocate the essential role played by measurement uncertainty for data interpretation in fusion experiments. Finally, we discuss future applications such as the establishment of scaling laws.