ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Geert Verdoolaege, Giorgos Karagounis, Andrea Murari, Jesús Vega, Guido Van Oost, JET-EFDA Contributors
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 356-365
Selected Paper from the Seventh Fusion Data Validation Workshop 2012 (Part 1) | doi.org/10.13182/FST12-A14627
Articles are hosted by Taylor and Francis Online.
Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in fusion experiments. In this work, we present an integrated framework for (real-time) pattern recognition for fusion data. The main starting point is the inherent probabilistic nature of measurements of plasma quantities. Since pattern recognition is essentially based on geometric concepts such as the notion of distance, this necessitates a geometric formalism for probability distributions. To this end, we apply information geometry for calculating geodesic distances on probabilistic manifolds. This provides a natural and theoretically motivated similarity measure between data points for use in pattern recognition techniques. We apply this formalism to classification for the automated identification of plasma confinement regimes in an international database and the prediction of plasma disruptions at JET. We show the distinct advantage in terms of classification performance that is obtained by considering the measurement uncertainty and its geometry. We hence advocate the essential role played by measurement uncertainty for data interpretation in fusion experiments. Finally, we discuss future applications such as the establishment of scaling laws.