ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
TEPCO restarts Kashiwazaki Kariwa Unit 6
Earlier today, TEPCO announced that after nearly 15 years, Unit 6 at the Kashiwazaki Kariwa nuclear power station has been restarted. Following approval from Japan’s Nuclear Regulation Authority (NRA), TEPCO withdrew the reactor’s control rods to initiate startup at 7:02 p.m. local time.
Next, the company will work with the NRA to confirm the safe operation of the plant. “We will carefully verify the integrity of each and every plant facility while suitably addressing any issues that arise and conveying information to the public during each step of the startup process,” TEPCO’s statement said.
Lázaro Emílio Makili, Jesús A. Vega Sánchez, Sebastián Dormido-Canto
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 347-355
Selected Paper from the Seventh Fusion Data Validation Workshop 2012 (Part 1) | doi.org/10.13182/FST12-A14626
Articles are hosted by Taylor and Francis Online.
This paper addresses the problem of finding a minimal and good enough training data set for classification purposes by using active learning and conformal predictors. Active learning means to have control in the selection process of training samples instead of choosing them in a random way. To this end, active learning methodologies look for establishing selection criteria in order to find out the samples that show better discrimination capabilities. In the present case, conformal predictors have been used for these purposes. Results will be presented in a five-class classification problem with images. The features are the vertical detail coefficients of the Haar wavelet transform at level four to diminish the sample dimensionality by reducing the spatial redundancy of the images. The active selection of training sets (through the reliability measures of a conformal predictor) allows the improvement of the classifiers. Here, the word "improvement" refers to obtaining higher generalization properties thereby avoiding overfitting. Support vector machines classifiers, in the one-versus-the-rest approach, have been used as the underlying classifiers.