ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
K. K. Dannenberg, C. A. Back, C. A. Frederick, E. M. Giraldez, R. R. Holt, W. J. Krych, D. G. Schroen, C. O. Russell
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 673-676
Technical Paper | doi.org/10.13182/FST07-A1462
Articles are hosted by Taylor and Francis Online.
This paper concerns the methods that were used to build an imbedded sphere in foam target for use on Omega to test theories of astrophysical jets. The core of the target is comprised of a titanium slab that is driven through a titanium washer into a low-density foam with an imbedded sphere. The critical dimension that needed to be known was the location of the center of the sphere with respect to the drive region. Initially, attempts were made to fabricate the sphere imbedded foam precisely, however the foam changed dimensionally during the drying phase of fabrication. The dimensional changes observed were often as large as the specified tolerances, so the foams required post fabrication characterization. Optical characterization of the foams weren't accurate enough and radiography was required for precision characterization. Once characterized, the sphere needed to be placed in the specified target geometry correct to an accuracy of ±25 m. The radiography images were imported into a CAD program and these images were used to assemble the target precisely. The methods used provided a well-characterized target with a good build.