ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
K. K. Dannenberg, C. A. Back, C. A. Frederick, E. M. Giraldez, R. R. Holt, W. J. Krych, D. G. Schroen, C. O. Russell
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 673-676
Technical Paper | doi.org/10.13182/FST07-A1462
Articles are hosted by Taylor and Francis Online.
This paper concerns the methods that were used to build an imbedded sphere in foam target for use on Omega to test theories of astrophysical jets. The core of the target is comprised of a titanium slab that is driven through a titanium washer into a low-density foam with an imbedded sphere. The critical dimension that needed to be known was the location of the center of the sphere with respect to the drive region. Initially, attempts were made to fabricate the sphere imbedded foam precisely, however the foam changed dimensionally during the drying phase of fabrication. The dimensional changes observed were often as large as the specified tolerances, so the foams required post fabrication characterization. Optical characterization of the foams weren't accurate enough and radiography was required for precision characterization. Once characterized, the sphere needed to be placed in the specified target geometry correct to an accuracy of ±25 m. The radiography images were imported into a CAD program and these images were used to assemble the target precisely. The methods used provided a well-characterized target with a good build.