ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
K. K. Dannenberg, C. A. Back, C. A. Frederick, E. M. Giraldez, R. R. Holt, W. J. Krych, D. G. Schroen, C. O. Russell
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 673-676
Technical Paper | doi.org/10.13182/FST07-A1462
Articles are hosted by Taylor and Francis Online.
This paper concerns the methods that were used to build an imbedded sphere in foam target for use on Omega to test theories of astrophysical jets. The core of the target is comprised of a titanium slab that is driven through a titanium washer into a low-density foam with an imbedded sphere. The critical dimension that needed to be known was the location of the center of the sphere with respect to the drive region. Initially, attempts were made to fabricate the sphere imbedded foam precisely, however the foam changed dimensionally during the drying phase of fabrication. The dimensional changes observed were often as large as the specified tolerances, so the foams required post fabrication characterization. Optical characterization of the foams weren't accurate enough and radiography was required for precision characterization. Once characterized, the sphere needed to be placed in the specified target geometry correct to an accuracy of ±25 m. The radiography images were imported into a CAD program and these images were used to assemble the target precisely. The methods used provided a well-characterized target with a good build.