ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
M. L. Hoppe, Sr., D. A. Steinman
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 606-610
Technical Paper | doi.org/10.13182/FST07-A1452
Articles are hosted by Taylor and Francis Online.
Progress has been made in reducing and quantifying residual gases in shells manufactured by the silicon doped glow discharge polymer (SiGDP) to glass process. Previously, glass shells were made using a high temperature, open-air box oven. If the temperature profile used was sufficient, clear, colorless shells were obtained which had ~1/3 of an atmosphere of residual gas consisting of a mixture of N2, O2, CO and CO2 with generally N2 and CO2 being the major constituents. Improvements to the process were made by utilizing a controlled atmosphere, high temperature oven and developing an improved temperature profile for the SiGDP to glass conversion process. It is now possible to manufacture clear, colorless glass shells containing noble gas(es), which is a first for the ICF program. In addition, the improvements in our process has led to shells containing less residual gas (N2, CO, and CO2) than previously obtainable. Tailored deuterium halflifes are also possible by adjusting the final sintering temperature which results in glass that is very near but not full density which allows in some cases for fielding of glass shells with half-lives which can be more suitable to the experimentalist.