ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
M. L. Hoppe, Sr., D. A. Steinman
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 606-610
Technical Paper | doi.org/10.13182/FST07-A1452
Articles are hosted by Taylor and Francis Online.
Progress has been made in reducing and quantifying residual gases in shells manufactured by the silicon doped glow discharge polymer (SiGDP) to glass process. Previously, glass shells were made using a high temperature, open-air box oven. If the temperature profile used was sufficient, clear, colorless shells were obtained which had ~1/3 of an atmosphere of residual gas consisting of a mixture of N2, O2, CO and CO2 with generally N2 and CO2 being the major constituents. Improvements to the process were made by utilizing a controlled atmosphere, high temperature oven and developing an improved temperature profile for the SiGDP to glass conversion process. It is now possible to manufacture clear, colorless glass shells containing noble gas(es), which is a first for the ICF program. In addition, the improvements in our process has led to shells containing less residual gas (N2, CO, and CO2) than previously obtainable. Tailored deuterium halflifes are also possible by adjusting the final sintering temperature which results in glass that is very near but not full density which allows in some cases for fielding of glass shells with half-lives which can be more suitable to the experimentalist.