ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
M. L. Hoppe, Sr., D. A. Steinman
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 606-610
Technical Paper | doi.org/10.13182/FST07-A1452
Articles are hosted by Taylor and Francis Online.
Progress has been made in reducing and quantifying residual gases in shells manufactured by the silicon doped glow discharge polymer (SiGDP) to glass process. Previously, glass shells were made using a high temperature, open-air box oven. If the temperature profile used was sufficient, clear, colorless shells were obtained which had ~1/3 of an atmosphere of residual gas consisting of a mixture of N2, O2, CO and CO2 with generally N2 and CO2 being the major constituents. Improvements to the process were made by utilizing a controlled atmosphere, high temperature oven and developing an improved temperature profile for the SiGDP to glass conversion process. It is now possible to manufacture clear, colorless glass shells containing noble gas(es), which is a first for the ICF program. In addition, the improvements in our process has led to shells containing less residual gas (N2, CO, and CO2) than previously obtainable. Tailored deuterium halflifes are also possible by adjusting the final sintering temperature which results in glass that is very near but not full density which allows in some cases for fielding of glass shells with half-lives which can be more suitable to the experimentalist.