ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
K. A. Moreno, H. W. Xu, A. Nikroo, H. Huang, J. Fong, J. E. Knipping, J. L. Kaae, E. M. Giraldez
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 581-585
Technical Paper | doi.org/10.13182/FST07-A1448
Articles are hosted by Taylor and Francis Online.
Rayleigh-Taylor experiments have been designed for the OMEGA laser facility at the Laboratory for Laser Energetics (LLE) of the University of Rochester to explore perturbations during implosion of this ablator. For the experiment to be relevant, the beryllium copper flat used as the target must be similar in chemical makeup and morphology to the NIF ignition target. To visualize the perturbation growth, the flats were fabricated with sinusoidal perturbations on one side of a wavelength of 50 m and amplitude of 0.25 m. The flats were doped with more copper than required in the NIF ablator specification to increase the x-ray optical depth during burn through. These flats were successfully fabricated using a mold technique. This technique, as well as the characterization techniques used to verify the chemical makeup and thicknesses, will be described in this paper.