ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
K. A. Moreno, H. W. Xu, A. Nikroo, H. Huang, J. Fong, J. E. Knipping, J. L. Kaae, E. M. Giraldez
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 581-585
Technical Paper | doi.org/10.13182/FST07-A1448
Articles are hosted by Taylor and Francis Online.
Rayleigh-Taylor experiments have been designed for the OMEGA laser facility at the Laboratory for Laser Energetics (LLE) of the University of Rochester to explore perturbations during implosion of this ablator. For the experiment to be relevant, the beryllium copper flat used as the target must be similar in chemical makeup and morphology to the NIF ignition target. To visualize the perturbation growth, the flats were fabricated with sinusoidal perturbations on one side of a wavelength of 50 m and amplitude of 0.25 m. The flats were doped with more copper than required in the NIF ablator specification to increase the x-ray optical depth during burn through. These flats were successfully fabricated using a mold technique. This technique, as well as the characterization techniques used to verify the chemical makeup and thicknesses, will be described in this paper.