ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
A. Nikroo, H. W. Xu, K. A. Moreno, K. P. Youngblood, J. Cooley, C. S. Alford, S. A. Letts, R. C. Cook
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 553-558
Technical Paper | doi.org/10.13182/FST07-A1443
Articles are hosted by Taylor and Francis Online.
Graded copper-doped Be shells have been fabricated by sputter coating on spherical mandrels. While such coatings have consistent microstructure and acceptable void content and size, we have found that they suffer from sufficient interconnected porosity leading to relatively rapid gas leakage. In this paper, we present an extensive study of D2 leakage out of Be shells made by sputter coating. The leakage appears to follow molecular flow dynamics as determined by examining the temperature dependence of the flow. Furthermore, the time dependence of the leakage suggests that the flow channels are nanometerish in diameter, propagating through the thickness of the coating, possibly brought about by residual stress in the coatings. We have investigated the D2 leakage time constant as a function of a large number of coating parameters, including the effect of introducing boron-doped layers. Addition of thin 0.25 m amorphous boron-doped layers near the inside surface has been most effective in producing shells with long time constants (greater than 7 days to immeasurable) with yield of greater than 50%. There is still substantial scatter in the data, even within a given coating batch, suggesting a possible stochastic cracking process driven by residual stress in the coating.