ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Nikroo, H. W. Xu, K. A. Moreno, K. P. Youngblood, J. Cooley, C. S. Alford, S. A. Letts, R. C. Cook
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 553-558
Technical Paper | doi.org/10.13182/FST07-A1443
Articles are hosted by Taylor and Francis Online.
Graded copper-doped Be shells have been fabricated by sputter coating on spherical mandrels. While such coatings have consistent microstructure and acceptable void content and size, we have found that they suffer from sufficient interconnected porosity leading to relatively rapid gas leakage. In this paper, we present an extensive study of D2 leakage out of Be shells made by sputter coating. The leakage appears to follow molecular flow dynamics as determined by examining the temperature dependence of the flow. Furthermore, the time dependence of the leakage suggests that the flow channels are nanometerish in diameter, propagating through the thickness of the coating, possibly brought about by residual stress in the coatings. We have investigated the D2 leakage time constant as a function of a large number of coating parameters, including the effect of introducing boron-doped layers. Addition of thin 0.25 m amorphous boron-doped layers near the inside surface has been most effective in producing shells with long time constants (greater than 7 days to immeasurable) with yield of greater than 50%. There is still substantial scatter in the data, even within a given coating batch, suggesting a possible stochastic cracking process driven by residual stress in the coating.