ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
H. Huang, R. B. Stephens, A. Nikroo, S. A. Eddinger, K. C. Chen, H. W. Xu, K. A. Moreno, K. P. Youngblood, M. Skelton
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 530-538
Technical Paper | doi.org/10.13182/FST51-530
Articles are hosted by Taylor and Francis Online.
In ablator shell fabrication, trace elements and impurities are introduced in the deposition and the pyrolysis process, which must be controlled below a critical level. However, it is the opacity, not the individual elements, which matters in an Inertial Confinement Fusion (ICF) implosion. Radiography measures the opacity, allowing the accurate determination of the total impurity effect in a lump sum. Furthermore, by using the sputter target trace element information, we can determine the radial profile of oxygen to ±0.4 at. %. Oxygen is very difficult to measure by any other method, but is critically important for beryllium process development such as mandrel removal. To ensure measurement accuracy, we use a local standard to remove fluctuation in film developing and a step wedge to calibrate the film model.