ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Hiroo Numata, Izumi Ohno
Fusion Science and Technology | Volume 38 | Number 2 | September 2000 | Pages 206-223
Technical Paper | doi.org/10.13182/FST00-A143
Articles are hosted by Taylor and Francis Online.
The physicochemical properties of the Pd-H system were studied by in situ potentiometric, resistance, and dilatometric measurements in each of three applied pulse modes, A, B, and C, and repeated H absorption and desorption. Potential, resistance ratio, and an increase in dilation (l/l0) were measured simultaneously after H equilibrium was attained with the Pd electrode. During continuous absorption, structural phase transition ( [right arrow] ) and void formation occurred, and the values of the H/Pd ratio in the limiting phase, in the + phase coexistence, and in the transition and the +voids coexistence regions are consistent with those obtained from the Pd-H isotherm at 40°C. Hydrogen absorption caused the dilation, from whose slope the molar volume was obtained as 0.64 ( phase) and 0.40 ( + phase) cm3/mol. The resistance increased in proportion to the H/Pd ratio and was kept constant at 1.7 to 1.8 over Rtr.For the first absorption through the phase (>min), the electrode potential shifted with an increase in dilation, which suggests nonequilibrium PdH2-x precipitation followed by conversion to the phase and void formation. Although there was a remarkable lack of any dependence on the number of repetitions of the values of the limiting resistance and potential corresponding to the + and + void coexistence, the onset of the phase, min, increased as the number of repetitions increased. The volumetric ratio for an increase in the H/Pd ratio corresponds to the absorption in high-density defect areas surrounding voids. During repeated absorption and desorption in the C applied pulse mode, the apparent molar volumes of the + phase coexistence show that absorption proceeds inhomogenously, in contrast to the first absorption in the A applied pulse mode.