ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. E. Rice, J. L. Terry, E. S. Marmar, R. S. Granetz, M. J. Greenwald, A. E. Hubbard, J. H. Irby, S. M. Wolfe, T. Sunn Pedersen
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 357-368
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1427
Articles are hosted by Taylor and Francis Online.
Trace nonrecycling impurities (scandium and CaF2) have been injected into Alcator C-Mod plasmas in order to determine impurity transport coefficient profiles in a number of operating regimes. Recycling Ar has also been injected to characterize steady-state impurity density profiles. Subsequent impurity emission has been observed with spatially scanning X-ray and vacuum ultraviolet spectrometer systems, in addition to very high spatial resolution X-ray and bolometer arrays viewing the plasma edge. Measured time-resolved brightness profiles of helium-, lithium-, and beryllium-like transitions have been compared with those calculated from a transport code that includes impurity diffusion and convection, in conjunction with an atomic physics package for individual line emission. Similar modeling has been performed for the edge observations, which are unresolved in energy. The line time histories and the profile shapes put large constraints on the impurity diffusion coefficient and convection velocity profiles. In L-mode plasmas, impurity confinement times are short (~20 ms), with diffusivities in the range of 0.5 m2/s, anomalously large compared to neoclassical values. During Enhanced D (EDA) H-modes, the impurity confinement times are longer than in L-mode plasmas, and the modeling suggests that there exists inward convection (50 m/s) near the plasma edge, with greatly reduced diffusion (of order 0.1 m2/s), also in the region of the edge transport barrier. These edge values of the transport coefficients during EDA H-mode are qualitatively similar to the neoclassical values. In edge localized mode-free H-mode discharges, impurity accumulation occurs, dominated by large inward impurity convection in the pedestal region. A scaling of the impurity confinement time with H-factor reveals a very strong exponential dependence. In internal transport barrier discharges, there is significant impurity accumulation inside of the barrier foot, typically at r/a> = 0.5. Steady-state impurity density profiles in L-mode plasmas have a large up-down asymmetry near the last closed flux surface. The impurity density enhancement, in the direction opposite to the ion B × [nabla]B drift, is consistent with modeling of neoclassical parallel impurity transport.