ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
C. P. C. Wong, V. S. Chan, A. M. Garofalo, R. Stambaugh, M. E. Sawan, R. Kurtz, B. Merrill
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 283-288
Fusion Technology Facilities | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14148
Articles are hosted by Taylor and Francis Online.
A fusion nuclear science facility (FNSF) is a necessary complement to ITER, especially in the area of material and component testing needed for DEMO design development. FNSF-AT, which takes advantage of advanced tokamak (AT) physics, should have neutron wall loading of 1-2 MW/m2 , continuous operation for periods of up to 2 weeks, a duty factor goal of 0.3 per year, and an accumulated fluence of 3-6 MW-yr/m2 ([approximately]30-60 dpa) in 10 years to enable the qualification of structural, blanket, and functional materials, components, and corresponding ancillary equipment necessary for the design and licensing of a DEMO. Base blankets with a ferritic steel structure and selected tritium blanket materials will be tested and used for the demonstration of tritium sufficiency. Additional test ports at the outboard midplane will be reserved for test blankets with advanced designs or exotic materials and electricity production for integrated high-fluence testing in a DT fusion spectrum. FNSF-AT will be designed using conservative implementations of all elements of AT physics to produce 150-300 MW of fusion power with modest energy gain (Q < 7) in a modest-sized normal conducting coil device. It will demonstrate and help to select the DEMO plasma-facing, structural, tritium-breeding, and functional materials and ancillary equipment including diagnostics. It will also demonstrate the necessary tritium fuel cycle, design and cooling of the first wall chamber, and divertor components. It will contribute to the knowledge on material qualification, licensing, operational safety, and remote maintenance necessary for DEMO design.