ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Mayoral, J. Sanz, D. López, R. Vila
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 276-282
Fusion Technology Facilities | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14147
Articles are hosted by Taylor and Francis Online.
The Spanish Technofusion project includes an irradiation laboratory equipped with two tandem-type accelerators (protons/deuterons and alphas) and a multi-ion cyclotron (heavy ions).A radioprotection issue concerning activation of the irradiated samples is to establish the required "cooling" waiting period for safe handling. Samples of iron, Al2O3, SiO2, and SiC are considered here.In dealing with this task, inventory calculations have been performed using, in addition to cross-section data available in different activation libraries, experimental data for some dominant reactions that have not yet been considered in the generation of the corresponding evaluated activation cross sections. Residual dose rate results, calculated from the radioactive inventory determined using both evaluated data alone and a combination of evaluated and experimental data, are compared and the impact of the results on handling limitations analyzed.Very affordable cooling times are found suitable for the irradiated samples. The calculated cooling times meeting safe handling requirements are expected to have high reliability for the proton beam in Al2O3 and the alpha beam in Fe and relatively high reliability for the proton beam in SiO2 and Fe as well as the alpha beam in Al2O3 and SiO2; only deuteron beam is satisfactory for Al2O3; and finally, for SiC, all cases are unsatisfactory.