ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
M. García, F. Ogando, P. Sauvan, J. Sanz, D. López, B. Brañas
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 265-271
IFMIF | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14145
Articles are hosted by Taylor and Francis Online.
Linear IFMIF Prototype Accelerator (LIPAC) is the prototype accelerator of the Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility (IFMIF) project. The EVEDA phase is a first IFMIF step devoted to the construction of prototypes of the main units. The deuteron beam of LIPAC (125 mA, 9 MeV) is stopped by a conical copper beam stop, giving rise to neutron and photon sources that must be shielded to comply with dose requirements. A reliable characterization of these secondary sources is a mandatory task.The built-in-semi-analytical nuclear models used by advanced Monte Carlo transport codes as Monte Carlo N-Particle eXtended (MCNPX) or Particle and Heavy Ion Transport code System (PHITS) have been demonstrated as unreliable for describing deuteron interactions and secondary particle production at these low energies. The use of reliable external nuclear data is consequently necessary in the design of the LIPAC shielding. In particular, the TENDL-2010 library has been compared with recently published experimental data demonstrating its reliability for deuteron interaction on copper at 9 MeV. The Monte Carlo Universidad Nacional de Educación a Distancia (MCUNED) code has been developed to make use of external nuclear data, and its use with the TENDL-2010 library has proven very satisfactory for LIPAC radioprotection analysis.The impact on radioprotection tasks in LIPAC when the unreliable nuclear models mentioned above are used is discussed.