ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Keitaro Kondo, Ulrich Fischer, Volker Heinzel, Axel Klix, Arkady Serikov
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 226-232
IFMIF | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14139
Articles are hosted by Taylor and Francis Online.
This work presents neutronic analyses to support the layout of the high energy beam transport (HEBT) section of the IFMIF neutron source in the framework of the Broader Approach (BA) EVEDA activities. In the HEBT section, neutron back streaming from the lithium target can cause significant damage to accelerator components and result in their activation. In order to estimate the resulting radiation doses, detailed neutron and photon flux distributions inside the Target Interface Room (TIR) and the Radiation Isolation Room (RIR) during operation are evaluated by using the Monte Carlo code McDeLicious, which is an enhancement to MCNP5. The obtained results show that the major contribution to the TIR dose during operation will come from neutrons streaming from the target through the beam ducts and from secondary photons produced in these parts. It seems to be impossible to use any semiconductor devices inside TIR, while for mechanical devices there should be no problem. The dose after shutdown due to decay gammas was preliminarily estimated for the beam duct at the most activated place in TIR. In order to reduce the shutdown dose rate, the use of a low-Mn-content aluminium alloy is proposed.