ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Keitaro Kondo, Ulrich Fischer, Volker Heinzel, Axel Klix, Arkady Serikov
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 226-232
IFMIF | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14139
Articles are hosted by Taylor and Francis Online.
This work presents neutronic analyses to support the layout of the high energy beam transport (HEBT) section of the IFMIF neutron source in the framework of the Broader Approach (BA) EVEDA activities. In the HEBT section, neutron back streaming from the lithium target can cause significant damage to accelerator components and result in their activation. In order to estimate the resulting radiation doses, detailed neutron and photon flux distributions inside the Target Interface Room (TIR) and the Radiation Isolation Room (RIR) during operation are evaluated by using the Monte Carlo code McDeLicious, which is an enhancement to MCNP5. The obtained results show that the major contribution to the TIR dose during operation will come from neutrons streaming from the target through the beam ducts and from secondary photons produced in these parts. It seems to be impossible to use any semiconductor devices inside TIR, while for mechanical devices there should be no problem. The dose after shutdown due to decay gammas was preliminarily estimated for the beam duct at the most activated place in TIR. In order to reduce the shutdown dose rate, the use of a low-Mn-content aluminium alloy is proposed.