ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Klix, Ch. Adelhelm, U. Fischer, D. Gehre, T. Kaiser
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 196-203
Blanket Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14135
Articles are hosted by Taylor and Francis Online.
A consortium of several European laboratories has performed neutronics experiments with a representative mock-up of the European helium-cooled lithium-lead (HCLL) test blanket module (TBM) irradiated with DT neutrons from intense neutron generators. The aim of these experiments was to provide experimental data for checking nuclear data and calculational tools for the prediction accuracy of important parameters such as the tritium production rate and neutron and gamma-ray flux spectra. The mock-up consisted of bricks of solid LiPb arranged in layers separated by Eurofer sheets. The 6Li concentration in the LiPb determines the slow neutron flux distribution in the mock-up, and an accurate knowledge of this value is of paramount importance for the analysis of these neutronics experiments. The analysis of the tritium production rate experiments revealed discrepancies between the real 6Li concentration and the one specified by the manufacturer of the LiPb (natural Li composition). Here we report on the investigation of the 6Li concentration in the LiPb with several experimental techniques: 1) time-of-arrival neutron spectra measured inside the mock-up irradiated with short pulses of 14-MeV neutrons from a DT neutron generator, 2) transmission measurements on LiPb bricks with moderated neutrons from an AmBe source to check for differences between bricks, and 3) mass spectroscopic methods on small samples taken from selected LiPb bricks. We found that the 6Li concentration varies only very little between the bricks. The weight fraction of lithium in the LiPb was 0.61 wt% as quoted by the manufacturer, but the 6Li abundance was half of the natural value in lithium, 3.8 at% instead of 7.5 at%.