ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
A. Klix, Ch. Adelhelm, U. Fischer, D. Gehre, T. Kaiser
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 196-203
Blanket Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14135
Articles are hosted by Taylor and Francis Online.
A consortium of several European laboratories has performed neutronics experiments with a representative mock-up of the European helium-cooled lithium-lead (HCLL) test blanket module (TBM) irradiated with DT neutrons from intense neutron generators. The aim of these experiments was to provide experimental data for checking nuclear data and calculational tools for the prediction accuracy of important parameters such as the tritium production rate and neutron and gamma-ray flux spectra. The mock-up consisted of bricks of solid LiPb arranged in layers separated by Eurofer sheets. The 6Li concentration in the LiPb determines the slow neutron flux distribution in the mock-up, and an accurate knowledge of this value is of paramount importance for the analysis of these neutronics experiments. The analysis of the tritium production rate experiments revealed discrepancies between the real 6Li concentration and the one specified by the manufacturer of the LiPb (natural Li composition). Here we report on the investigation of the 6Li concentration in the LiPb with several experimental techniques: 1) time-of-arrival neutron spectra measured inside the mock-up irradiated with short pulses of 14-MeV neutrons from a DT neutron generator, 2) transmission measurements on LiPb bricks with moderated neutrons from an AmBe source to check for differences between bricks, and 3) mass spectroscopic methods on small samples taken from selected LiPb bricks. We found that the 6Li concentration varies only very little between the bricks. The weight fraction of lithium in the LiPb was 0.61 wt% as quoted by the manufacturer, but the 6Li abundance was half of the natural value in lithium, 3.8 at% instead of 7.5 at%.