ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
K. Shiba, H. Tanigawa, T. Hirose, T. Nakata
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 145-149
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14127
Articles are hosted by Taylor and Francis Online.
A toughness-improved type of F82H steel called F82H mod3 has been developed, and the material properties and irradiation behavior have been examined. The significant modification of the chemical composition is the reduction of Ti (<10 ppm) and N (<20 ppm) as impurities and the increase of Ta (0.1%) as an alloying element. The ductile-to-brittle transition temperature (DBTT) is improved to -90°C from -45°C for F82H IEA without change in strength. However, the creep rupture time of F82H mod3 was 1/10 of F82H IEA. Another feature of the F82H mod3 is the stability of the material properties. Higher temperature normalization (1080°C) degrades the DBTT only to -80°C due to grain coarsening without large change in strength. It is quite important for large-scale production of the material in high quality. Preliminary neutron irradiation experiments up to 17 dpa showed better irradiation resistance to changes in fracture toughness than F82H IEA.