ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
K. Shiba, H. Tanigawa, T. Hirose, T. Nakata
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 145-149
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14127
Articles are hosted by Taylor and Francis Online.
A toughness-improved type of F82H steel called F82H mod3 has been developed, and the material properties and irradiation behavior have been examined. The significant modification of the chemical composition is the reduction of Ti (<10 ppm) and N (<20 ppm) as impurities and the increase of Ta (0.1%) as an alloying element. The ductile-to-brittle transition temperature (DBTT) is improved to -90°C from -45°C for F82H IEA without change in strength. However, the creep rupture time of F82H mod3 was 1/10 of F82H IEA. Another feature of the F82H mod3 is the stability of the material properties. Higher temperature normalization (1080°C) degrades the DBTT only to -80°C due to grain coarsening without large change in strength. It is quite important for large-scale production of the material in high quality. Preliminary neutron irradiation experiments up to 17 dpa showed better irradiation resistance to changes in fracture toughness than F82H IEA.