ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
K. Shiba, H. Tanigawa, T. Hirose, T. Nakata
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 145-149
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14127
Articles are hosted by Taylor and Francis Online.
A toughness-improved type of F82H steel called F82H mod3 has been developed, and the material properties and irradiation behavior have been examined. The significant modification of the chemical composition is the reduction of Ti (<10 ppm) and N (<20 ppm) as impurities and the increase of Ta (0.1%) as an alloying element. The ductile-to-brittle transition temperature (DBTT) is improved to -90°C from -45°C for F82H IEA without change in strength. However, the creep rupture time of F82H mod3 was 1/10 of F82H IEA. Another feature of the F82H mod3 is the stability of the material properties. Higher temperature normalization (1080°C) degrades the DBTT only to -80°C due to grain coarsening without large change in strength. It is quite important for large-scale production of the material in high quality. Preliminary neutron irradiation experiments up to 17 dpa showed better irradiation resistance to changes in fracture toughness than F82H IEA.