ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
W. Krauss, N. Holstein, J. Lorenz, J. Konys
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 129-133
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14124
Articles are hosted by Taylor and Francis Online.
In fusion technology, functional scales are required for various application fields like first wall tungsten coating, anti-corrosion or tritium permeation barriers, and brazing layers in joining technology. Established processes for layer deposition exhibit several kinds of drawbacks ranging from difficulty controlling layer thickness, inhomogeneity of coatings, application limits because of geometrical reasons, or critical thermal loading. Inherently, electrochemical plating technology does not exhibit these critical features. Growing of galvanic layers depends on the transported charge and thus can easily be controlled by current flow and/or deposition time. The main part of this development work was focused on voltammetric analyses to assist the deposition of transition metals on refractory metal surfaces, e.g., tungsten and Eurofer steel, and to deliver boundary conditions for electrolytes. Typical elements that can be used in joining may range from Ti, V by Ni, Fe up to Pd, and Cu. However, a direct joining of tungsten onto Eurofer steel by copper is metallurgically impossible due to missing miscibility of copper with tungsten. Thus, interlayers with an active functionality are required, which interact with both bulk components and filler to obtain a sound braze joint brazing. For both W-W and W-Eurofer joints, demonstrators were successfully fabricated and analyzed by metallurgical and physical methods.